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The formalism of the method of lattice statics is applied to obtain an expression for the vol-
ume change associated with a noncubic point defect in a monatomic lattice, assuming that the

defect exerts no shear stress.

This expression is used to calculate the volume changes asso-

ciated with the octahedral and tetrahedral carbon interstitials in a@-iron.

One of the physically interesting changes in the
properties of a crystal brought about by the intro-
duction of a point defect into the lattice is the
volume change, or dilatation induced by the relaxa-
tion of the atoms of the host crystal to new equilib-
rium conditions. Currently, the most common
method of calculating the dilatation associated with
a given defect is to treat a portion of the crystal
as an elastic continuum and obtain the strength pa-
rameter of the defect by somehow matching the
displacements of host atoms in a discrete “core”
region near the defect to the displacements of the
atoms along the boundary between the discrete re-
gion and continuum region of the crystal.

More recently, a completely atomistic approach
has been applied to the problem of determining the
properties of point defects'~* in crystals. This
technique, known as the method of lattice statics,
is unique in that the equations of elasticity theory
can be obtained directly from the corresponding
lattice-statics equations for points in the lattice
far away from the defect. Hardy® has shown that
this natural transition from lattice theory to elas-
ticity theory can be used to obtain a consistent ex-

pression for the lattice-strength tensor G;; which
is used to represent the point defect as a singularity
in the body force on the elastic medium:

9 -
-F,=-2G;; — 6(F) (1)
i ; ij an ’

where i and j are Cartesian-coordinate indices. In
terms of the force F' exerted by the defect on its
Ith neighboring atom and the position vector R’ of
the Ith atom in the perfect lattice, the strength ten-
sor is

G,;=21 F'R} . (2)
1

In the case of a cubic point defect, G,;;=0 for
i#j and all of the diagonal elements, G;; are equal
to the same constant G. Hardy® has shown that for
this case the dilatation Av produced by the defect
is

I pl
szg =2 FiR

DS @)

where K is the bulk modulus of the host crystal.
The derivation given by Hardy can be extended
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in a straightforward manner to the case of a point
defect which does not exhibit cubic symmetry, as-
suming the defect does not induce shear stresses
in the lattice. In this case the off-diagonal ele-
ments of the strength tensor G vanish, but the diag-
onal elements are no longer identical. Hence, the
lattice will not dilate uniformly along each of the
(100) Cartesian axes, but will dilate by some
amount §; along the jth axis, where i ranges from
1 through 3. The elastic energy density is then
given by

=3Cy1 (62 +062+6%) + C1p(5,63+06,6,+6563) ,  (4)

and the energy changes for the undilated lattice and
the dilated lattice are, respectively,

AU= Z)q/ |R! + 2 |)+ Em{ (5)

and
=, = 1 -
aU =D W(| R +E[)+5 L FiE +uNvV, . (6)
1 I,i

Here R’ is the position vector of the /th atom in the
perfect lattice, £ is the displacement of the Ith
atom from its perfect lattice position, and ¥(Ir|)

is the interaction between the defect and a host atom
a distance » away from the defect. N is the number
of atoms per unit volume, v,. A bar over any quan-
tity means that it is to be evaluated for the dilated
lattice and, in particular,

R =[RI(1+6,), RL(1+86,), Ry(1+6,)] . 0

We assume that the same force-constant matrix
qb is valid for both the dilated and undilated lat-
tlce, i.e., El=o!I'F} and ¢&=¢! F'. Letting

Fi=F!+AF;}
and
Ei=Ei+AL,

one can expand ¥(IR' +Z'1) in a Taylor’s series
about 6, and £}, and then we have

1
AU - AU=-2J FIR!5, 'E,E Fiat!
1,1 , i
ZEAF;Ei+NVw (8)
Using the fact that A&} =¢}} F!', this becomes

AU - AU=-23 FIR%, +NV,w
I,i

—-;-E(F‘, ' t) AF’q)”'F}' . (9)
1,i
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Since ¢!} is a symmetric matrix, the last term
in Eq. (9) vanishes and
AU'- AU=-2J FIR%, +NV,w . (10)
Iy
The §; are now determined by minimizing this en-
ergy change with respect to §;, which gives a set
of three equations of the form

%) FIR!=3NV,[2C6; +2Cy,(8; +5,)] , (11)

where i, j, and 2 may take on values from 1 through
3, but i#j+#k. Adding these together, one obtains
2 PRI =4NV,(2C,,6,+4Cy,0,) , 12)
1,i
where 6,=08, +8,+0,. To first order, the dilatation
AV is given by AV=NV,5,. Hence, Eq. (12) be-
comes
20 FIR = (Cyy +2C)AV , (13)

1,i

and using the definition of the bulk modulus K
=4(Cy; +2Cy,), one obtains, finally,

AV= E‘ERL . (14)
1,1

Lattice-statics calculations have recently been
carried out to determine the atomic relaxations
about tetrahedral and octahedral carbon interstitials
in a-iron.® The strength tensors for these defects
contain no off-diagonal elements, so that Eq. (14)
should be applicable. It should be noted at this
point that recent disacommodation experiments by
Wuttig and Keiser’ indicate that in ferroelectric
materials, the magnetic energy strongly affects the
activation volume of defects. However, the inter-
atomic potentials used in the lattice-statics calcu-
lations were derived on a strictly mechanical basis
and the remainder of this treatment will be carried
out on the same assumptlon Using the numerical
values for ¥ and f,-‘ obtained in Ref. 6, one obtains
a volume change of 0.26 atomic volumes for the
tetrahedral case but only 0. 14 atomic volumes for
the octahedral case. Direct-space calculations
using the same interatomic potentials have been
done by Johnson et al., ® and a volume change of
0. 28 atomic values was found for both cases. As-
suming the tetrahedral configuration to be the sad-
dle-point configuration for defect migration, John-
son et al, ® obtained an activation volume of 0.0
atomic volumes, whereas the present calculations
indicate an activation volume of 0. 12 atomic vol-
umes. Since the parameters of the carbon-iron
interaction were obtained by Johnson et al. ® in such
a way as to match the experimentally determined
condition that the activation volume be zero, it is
natural that this result should be reproduced in



4 VOLUME CHANGE ASSOCIATED WITH NONCUBIC...

their direct-space calculations.

The method of calculating the formation volumes
in the direct-space approach differs from that out-
lined in the present paper, so that one cannot, in
this case, construe the differences in the activa-
tion-volume results as being due to the shortcom-
ings of the direct-space technique pointed out
earlier.** However, Hardy® has pointed out that
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current elasticity-theory methods of obtaining the
volume changes induced by a defect are generally
unreliable. The discrepancies in the activation
volume found here, along with the corresponding
differences in migration energies found in Ref. 6,
cast a certain amount of doubt on the parameters
of the carbon-iron interaction developed in Ref. 8
by direct-space technique.

*Work supported by the Senate Research Committee of
the University of Nebraska at Omaha, Omaha, Neb.
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Reformulation of the lattice thermal conductivity of solids has been given, using the fact that
the three-phonon umklapp processes can be divided into different classes depending on the re-
ciprocal-lattice vectors of the crystal concerned, and that they tend towards displaced distribu-
tion functions characteristic of their own. The expression obtained differs from that of Callaway
by terms which are expected to be of minor importance in real systems.

I. INTRODUCTION

In the past, most of the calculations of the lattice
thermal conductivity of crystals have been made by
using the Boltzmann transport equation for pho-
nons.!”3 In its linearized form, this equation can
be written as

~ =, dN (aN)
VeVT —= =\7 ) (1)
dT at scatt

where N=N(§j) is the phonon occupation number
corresponding to state j in the crystal under study
and V=V(qj) is the phonon group velocity, § and j
being the phonon wave vector in the reduced-zone
scheme and the polarization index, respectively.
The term VT is the steady-state thermal gradient.
To calculate the lattice thermal conductivity, one
has to solve Eq. (1) for N. Usually, it is assumed
that N differs only slightly from the corresponding
Planck distribution N° characteristic of the tem-
perature of the system. This assumption can be
taken to be valid at least for vanishingly small ther-
mal gradient. One can therefore replace N by N°

on the left-hand side of Eq. (1), obtaining

dN «x e*
d—T_?(e"-l) s (2)

where x=wh/kT, w=w({7j) being the phonon fre-
quency and % being the Boltzmann constant.

The term (8N/8¢)4..¢¢ On the right-hand side of
Eq. (1) describes the rate of increase of N as a re-
sult of the various scattering processes taking place
in the crystal. If the scattering events do not in-
terfere, then it is possible to write this term equal
to the sum of the individual contributions (3N/8¢);
of the different types of scattering processes, where
i specifies the type of process. (By interference
we mean that there exists no scattering event which
belongs to two different types of scattering pro-
cesses.) Since (0N/d¢t); has a very complicated
form even for highly simplified systems, the relax-
ation-time approach is often used. The relaxation
time gives a statistical description of how the scat-
tering processes of a given type tend to modify the
phonon occupation number. Formally, the relaxa-
tion time 7; is defined by



